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Abstract---This paper presents a numerical method directed towards the local simulation of axisymmetric 
vapor bubble growth. We use an interface tracking method in conjunction with a finite volume method on 
a moving .unstructured mesh. We allow metastable bulk states and assume the interface exists in thermal 
and chemical equilibrium. The bulk fluids are viscous, conducting, and compressible. The control volume 
continuity, momentum and energy equations are modified in the presence of a phase interface to include 
surface tension and discontinuous pressure and velocity. A solid wall model is included to allow for 

conjugate heat transfer modes. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Heterogeneous nucleate boiling is a fundamental pro- 
cess important in engineering thermal fluid mechanics. 
The continual netting and rewetting of the heated 
surface by the liquid phase along with the efficient 
heat transfer pra’moted by the use of the latent heat 
of vaporization makes nucleate boiling a preferred 
mode of heat transfer in heat exchanging equipment. 
This importance has led to decades of experimental 
and theoretical studies. Early research focused on 
understanding the problem of homogeneous vapor 
bubble growth. F’lesset and Zwick [ 1] took advantage 
of the spherical symmetry inherent in homogeneous 
nucleate boiling to provide an analytical solution for 
diffusion controlled vapor bubble growth. This solu- 
tion used a lumped parameter model for the vapor 
phase, included surface tension and took into con- 
sideration the thin thermal layer on the liquid side of 
the phase interfirce. Mikic et al. [2] used a matched 
asymptotic expansion to match the inertial controlled 
early growth solution to the above mentioned 
diffusion controlled solution. This solution was 
extended to the heterogeneous case by the use of a 
shape factor. Workers found difficulty matching ana- 
lytic solutions of this type to experimental data. The 
currently accepted explanations for this discrepancy 
are that heterogeneous bubble growth is enhanced 
by either a microconvection mechanism or a liquid 
microlayer at the base of the bubble [3, 41. 

There is a growing body of literature in which 
workers have successfully matched experimental data 
to models of heterogeneous bubble growth by includ- 
ing a microlayer in their model. Wang and Bankoff [5] 
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included the microlayer surface area in their model of 
bubble growth in a depressurizing liquid. The results 
were in good agreement with their experimental data. 
Mei et al. [6, 71 consider the conduction of heat from 
a solid through a liquid microlayer to the liquid-vapor 
interface in a model for saturated boiling. They suc- 
cessfully match experimental data with this approach. 
It is worth noting that their model required the use of 
two parameters obtained from experimental data on 
the microlayer and bubble shapes. A similar model 
was used by Guo and El-Genk [8] in their analysis 
of vapor bubble growth on a composite solid. An 
outstanding feature in the work of Mei et al. and of 
Guo and El-Genk is that the thermal field in the solid 
is shown to be of importance in heterogeneous vapor 
bubble growth. 

Despite this progress there are still fundamental 
aspects of nucleate boiling that are not well under- 
stood. The models discussed above do not solve for 
the hydrodynamics of the fluid flow, nor do they locate 
the moving phase interface. This information is 
included through the use of correlations making use 
of experimental data. There is interest in solving the 
moving boundary hydrodynamics problem to increase 
the understanding of the various mechanisms in het- 
erogeneous bubble growth. For example, bubble 
departure models usually make assumptions about the 
comparative magnitudes of buoyancy forces, surface 
tension forces, inertial forces and viscous drag forces 
[9, lo]. The experimental data for bubble departure 
diameters shows considerable scatter when compared 
to many of the correlations [9]. These correlations 
generally assume one or more of the above mentioned 
forces is either dominant or negligible. Verification of 
these assumptions would be of considerable interest 
in improving these types of correlations. One 
approach to verifying these assumptions and improv- 
ing our understanding of the basic mechanisms of 
nucleate boiling is through numerical simulation. This 
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NOMENCLATURE 

A(t) time dependent area with normal in 
azimuthal direction 

A, B constants in bubble growth equation 
from Mikic et al. [8] 

C(t) time dependent curve describing 
intersection of phase interface with s(t) 

Cpl, C, liquid specific heat, solid specific heat 
e fluid internal energy 

9 Gibb’s potential 
h k latent heat of vaporization 
: 9 
‘3 J unit vector in x-direction (radial 

direction for 0 = 0) and y-direction 
Ja Jakob number 
n outward directed unit normal vector 
P pressure 

9 heat flux vector, Fourier’s law assumed 
r, P radial coordinate, average radial 

coordinate on area A(t) 
Rf non-dimensional bubble radius 
S(t) surface area of moving control volume 

(t) 

t time 
T+ viscous stress tensor 
v, v, fluid velocity, mesh and interfacial 

velocity 
V(t) time dependent control volume 
x, y Cartesian coordinates. 

Greek symbols 
liquid diffusivity 
surface tension 
azimuthal coordinate in cylindrical 
coordinate system 
temperature, saturation temperature 
fluid viscosity, density 
solid density 
unit tangent vector 
general conserved variable. 

Subscripts 

g9 1 vapor and liquid phases, respectively 
0 reference state. 

1 

paper presents a correlation free numerical approach 
suitable for the local simulation of vapor bubble 
growth. The important feature of the method pre- 
sented is that the interface between the liquid and 
vapor phases is tracked in flows with mass transfer. 
We feel that this approach will eventually enable us 
to simulate heterogeneous bubble growth including 
hydrodynamics and the evolution of the bubble shape 
along with the formation of the liquid microlayer. 

During the last decade, numerical approaches to 
address this problem have begun to appear in the 
literature. Lee and Nydahl [ 1 l] used an assumed bub- 
ble and microlayer shape to simulate the growth and 
departure of vapor bubbles. Their method used a 
lumped parameter model for the vapor phase and 
required an empirical relationship to complete the 
geometry. Results of their work were used in the 
experimental work of Zeng et al. [lo] to aid in the 
development of a more accurate bubble departure 
model. A similar numerical approach was taken by 
Patil and Prusa [12] who assumed a hemispherical 
shape in simulating vapor bubble growth on a heated 
wall. In these methods, the bubble shape is assumed. 
In order to simulate bubble growth including the evol- 
ution of the bubble shape, hence eliminating the need 
for correlations, it is necessary to include interface 
tracking capability. 

The problem of vapor bubble growth poses special 
difficulties for interface tracking methods. The major 
difficulty is that the liquid and vapor velocities are 
discontinuous across the phase interface. An 
additional difficulty is that there typically exists a ther- 

mal layer which moves with the phase interface. The 
Volume of Fluid (VOF) advection and reconstruction 
algorithms [13] assume a continuous velocity field as 
does the interface tracking method in the paper by 
Tryggvason [14]. The Level Set Method of Osher and 
Sethian has been applied to problems in which the 
interface is not simply advected with the fluid [15], 
but the method has not been applied to problems of 
liquid-vapor phase change. These methods are 
implemented on Eulerian grids and are able to track 
interfaces in fluid flows in which there is significant 
interfacial distortion and change in topology. VOF 
methods have been used in conjunction with two-fluid 
models [ 161 and the homogeneous equilibrium model 
[17] for calculations of flows involving liquid-vapor 
phase change. These methods, while useful in indus- 
trial simulations, are not intended to capture local 
physics near phase interfaces and require the use of 
correlations or the assumption of homogeneous equi- 
librium to complete the problem formulation. The 
method presented in this work is more closely related 
to Lagrangian methods. Typically, Lagrangian 
methods are able to capture interfacial physics with 
higher fidelity than Eulerian methods, but are unable 
to follow the overall interfacial motions that Eulerian 
methods are capable of following. 

An additional difficulty in simulating bubble 
growth is that the interface tracking method must 
accurately calculate gradients near the moving inter- 
face. Consider a simplified form of the energy jump 
condition at a phase interface : 

+4, = ll~ll en. (1) 
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This relationship indicates that the mass transfer rate 
and hence the interfacial motion is determined largely 
by the temperature gradient near the phase interface. 
For vapor bubble growth, this gradient exists in a thin 
layer on the liquid side of the interface. In addition, 
this relationship indicates that if the liquid is in a 
metastable state, the thermal layer tends to be sucked 
into the phase interface. As the interface moves, it is 
essential that the grid structure has high resolution 
near the interfao:. This is an additional difficulty for 
Eulerian methods as this may require high grid res- 
olution in regions where it is not necessary. 

The difficulties in applying existing interface track- 
ing techniques to liquid-vapor phase change problems 
led us to develop a two-dimensional method directed 
to problems of this type [18]. In our method, the 
interface is embe’dded within control volumes defined 
on a moving triangular mesh. The interface is tracked 
with nodes affixed on the liquid and vapor sides at the 
same spatial location. The moving mesh allows us to 
keep a high grid resolution near the interface in order 
to accurately represent the steep gradients attendant 
with the mass transfer problem. There is a dis- 
continuity of the normal component of the fluid vel- 
ocity and pressure across the moving phase interface. 
We solve finite volume mass, momentum and energy 
equations for both the liquid and vapor phases. Both 
phases are viscous, conducting and compressible 
fluids. The state equations are extended smoothly into 
the saturation region allowing for the existence of 
metastable states. At the phase interface, we assume 
thermodynamic equilibrium. The interfacial motion is 
found from the physics while the mesh motion in the 
bulk regions is calculated by simple interpolation with 
neighboring nodes. In this paper, we extend this 
method to axisy:mmetric flows and we add a solid, 
conducting wall in order to simulate heterogeneous 
vapor bubble growth. 

The outline for this paper is as follows. We state 
the governing equations in Section 2 and discuss the 
numerical method in Section 3. Simulations are pre- 
sented in Section 4. 

2. THE BASIC EQUATIONS 

For our method we must express the basic equations 
in integral form for non-material, moving volumes 
with embedded phase interfaces. Such a volume is 
shown in Fig. 1. Neglecting surface properties other 
than surface tens on, the continuity, momentum, and 
total energy equations for these volumes may be 
expressed as 

p(v-v,)*ndS = 0 (2) 

Fig. 1. Non-material, moving volume with embedded phase 
interface. 

+ s yrdC (3) 
C(f) 

+ s v*T*ndS+ 
s 

pv.bdV- 
s(r) V(f) s 

q*ndS (4) 
SK 

where r is a unit vector in the tangent plane of the 
interface outwardly directed from the volume V(t). 
Here V(t) = V, u V,, S(t) = S, u S, and &is the phase 
interface. C(t) is a curve describing the intersection of 
the interface with the surface S(t). We note that single 
phase regions are described by similar equations with 
no surface tension terms where V(t) and S(t) are the 
single phase control volume and surface, respectively. 
We use the total energy equation as it is a conservative 
form. With this set of basic equations we must include 
the kinematic relationship between the mesh motion 
and the time rate of change of the control volume 

d 

-1 s dt 
dV- v;ndS = 0. 

U0 s(t) 

We used linearized state equations for internal 
energy and density with temperature and pressure as 
the independent variables. 
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e=e(9,P) =eo+$ (3-9,)+$ (P-P,) 
P 9 

p=p@,P) =,,,+$ (9-9,)+$ (P-PO) (6) 
P 9 

a temperature dependent surface tension 

7=ye+g9-3,) (7) 

and the interface thermal equilibrium conditions. 

9, = 9, 

&(P,, 9,) = Sl(P,, 4). (8) 

Note that these interface conditions neglect the irre- 
versibilities associated with heat and mass transfer at 
the interface. Generalization of these conditions to 
consider irreversible effects may be found in references 
[19] and [20]. At the interface we also enforce con- 
tinuity of the tangential component of two phasic 
velocities 

(v*r), =(v*r),. (9) 

3. THE NUMERICAL METHOD 

In this section we describe the extension of the two 
dimensional interface tracking method presented in 
[18] to axisymmetric flows with a solid wall model. 
This method may be characterized as a conservative, 
low order, semi-implicit finite volume method on an 
unstructured, moving grid. Discrete approximations 
to the integrals comprising the control volume are 
arrived at by assuming linear shape functions on tri- 
angles and accumulating the contributions of each 
triangle in the control volume balance equations. 
Despite the fact that the spatial discretizations in our 
method are centered differences on a uniform grid, 
the spatial order is not claimed to be second order as 
our grids are not uniform. Formally, the spatial order 
is first order, but we obtain results closer to second 
order as will be demonstrated. The temporal dis- 
cretization used is implicit except in the coefficients of 
the relative velocity in the flux terms, the body force 
terms, the viscous work terms, and the geometry used 
in forming the equations [ 181. The time discretization 
may be characterized as a simple forward time 
method. Time step limitations are a convective limit 
and a capillary limit associated with the use of explicit 
geometry on the surface tension terms. 

Control volumes containing phase interfaces must 
include the interfacial thermal and chemical equi- 
librium conditions along with surface tension force 
and work terms. Surface tension forces are added as 
vector forces acting on the boundary of the control 
volume. This treatment allows us to avoid calculation 
of the curvature and has been demonstrated in [ 181 to 
be accurate in simulations in which surface tension 
plays a dominant role. The interface conditions 

expressing thermal and chemical equilibrium are 
applied to the nodes representing the liquid and vapor 
phases at the same spatial location on the interface. 
The interfacial motion in the direction normal to the 
interface is determined by physics and must be deter- 
mined as part of the solution procedure. The inter- 
facial motion in the direction tangent to the interface 
is not determined by physics and is prescribed in such 
a way as to keep interfacial nodes equidistant from 
other interfacial nodes. The bulk mesh motion is not 
determined by physics and the simulations in this 
paper use simple implicit averaging with neighboring 
nodes to determine the bulk mesh motion. The 
method is closed by the implementation of two 
numerical boundary conditions at the interface. In 
the simulations presented in this paper we use simple 
linear pressure extrapolations on each side of the 
phase interface as the numerical boundary conditions. 
We believe that the moving boundary problem associ- 
ated with phase interfaces across which there is mass 
transfer still contain some open questions of physics. 
The interested reader should consult the paper by 
Dell’Isola and Roman0 [2 1] in which the authors were 
forced to postulate an additional constitutive equation 
in their discussion. Another paper of interest is the 
paper by Huang and Joseph [22] in which the authors 
compare two sets of conditions at the phase interface 
in a stability problem. 

In what follows, we discuss the extension of the 
two-dimensional spatial discretization [ 181 to the axi- 
symmetric case. Consider the grid structure of Fig. 2 
showing a few triangular elements in the r-z plane. In 
this plane, the control volume intersects the shaded 
area A. The control volume edges are defined as 
straight line segments from the area centroid of the 
triangles to the mid-points of the sides of the triangles. 
The control volume in Fig. 2 also contains an embed- 
ded phase interface lying on the edges of triangular 
elements. As is shown in Fig. 2, the control volume is 
created by rotating the area A about the z-axis from 
-As/2 to A0/2. In order to obtain the axisymmetric 
approximation with a two dimensional code, we take 
the limit as A0 + 0. In our discretizations we must 
evaluate surface integrals on the lateral surfaces, C, 
and azimuthal surfaces, A. We must also evaluate 
volume integrals over V and, if the control volume 
contains an embedded phase interface, line integrals 
along the curve C(t). 

3.1. Volume integrals 
The time derivatives are evaluated by lumping the 

conserved variable, Y, at the node 

d 
-1 
dt v(r) 

\rdVr$(Yl’)=Y;+V~ (10) 

where V = ?(AO)A(t) with P with the radial coordinate 
of the area center for the control volume in the r-z 
plane. The body force terms in momentum and energy 
are lumped in a similar manner. 
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r 

Z f I.- P 

f 7 node 
z 

inl:erface 
Fig. 2. Top: Three dimensional view of a control volume 
showing azimuthal surface (A) and lateral surface (Z). Bot- 
tom : Two dimensional discretized control volume (shaded 
area) with embedded phase interface on a triangular mesh. 

3.2. Azimuthal surface integrals 
Due to the axisymmetry, there is no mass flux across 

the azimuthal surfaces and we need only calculate 
pressure and normal stress forces on these surfaces. 
On these surfaces the outward directed normal, n, 
does not vary. Furthermore, due to the axisymmetry, 
the pressure forces and normal stress forces on the 
front and back faces cancel in the azimuthal direction. 
Themomentum pressure surfaceintegralbecomes 

s Pn dA = --;(A@ 
s 

PdA (11) 
40 A(f) 

where i is a unit vector in the Cartesian x-direction. 
The pressure varies linearly over the separate regions 
making up the area A (shown in Fig. 2) and this 
integral is evaluated exactly using these linear profiles. 
The momentum viscous stress surface integral is 
evaluated in a :similar manner. The pressure and vel- 
ocity in these terms are treated implicitly. 

3.3. Lateral surface integrals 3.5. Control volumes containing a solid 
Integrals over the lateral surfaces comprise the We write an energy balance for the control volumes 

majority of the surface integrals that need be evalu- containing a solid simply by summing the energy bal- 
ated. There is pressure force and pressure work along ances for the liquid region and the energy balance for 
with viscous forces and viscous work on these the solid region. Note that the flux terms across the 
surfaces. There is also mass flux across these surfaces surface defining the solid wall will cancel in this oper- 
along with volume changes associated with the motion ation. The resulting control volume energy balance is : 

of these surfaces. These integrations can be approxi- 
mated by forming the surface element, rd0dl and 
integrating out the 0 dependence (only the unit 
normal, n, is a function of 0). Here, 1 is the length of 
the edge of the surface in the r-z plane. The results 
can be expressed as one of the following forms : 

I 
@ndS =(n,i+rz,j)(A0) 

s 
‘@rdl (12) 

Z(f) 0 

s 
@*ndS=(n,T+n,~)(Ae)+ ‘@rdl 

s 
(13) 

Z(l) 0 

where CD may be a scalar or vector field. Along the 
straight line segments @ and r vary linearly along 
the length I and the integrals are evaluated exactly. 
Further details of the lateral surface discretization 
may be found in [ 181. 

3.4. Line integral over C(t) and control volumes con- 
taining phase interfaces 

For control volumes containing phase interfaces, 
the closed curve C(t) appears on surfaces of both 
types. As with the surface integrals on azimuthal sur- 
faces, symmetry considerations lead to the following 
contribution to the line integral across the azimuthal 
surfaces 

s 
yr dC = -i(AQ) 

I 
y dC. (14) 

C,&) c,(r) 

The surface tension is a linear function of temperature, 
hence this integration is a simple application of the 
trapezoidal rule. On lateral surfaces, the contribution 
to the line integral is 

F yz dC = (n,i+n,$(A,8)ry. (15) 

The total line integration is the sum of the line inte- 
grals over all line segments. The line integrals are 
added to the momentum and energy control volume 
equations for control volumes containing phase inter- 
faces. The volume conservation equation, equation 
(5), is applied to the liquid and vapor phases sep- 
arately [see equation (lo)]. Therefore, the discrete 
control volume equations containing phase interfaces 
must also contain the term [18] 

[‘Yl-Ygl i v;ndS. (16) 
Jw 

Here Z,(t) is the interfacial surface separating the 
phases in the control volume. 
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+ ; 
s 

p,C,(9-9,) dV = - 
K I 

Pv-ndS 
SC0 

+ 
s 

v* T-ndS+ 
s 

pv*bdV 
s(r) 00 

-~~~,~~.ndS-Jli4.“dS. (17) 

Here, V(t) and S(t) refer to the time varying volume 
and surface of the liquid region, respectively. V, and 
S, refer to the stationary volume and surface of the 
solid region, respectively. The spatial and temporal 
discretizations formed for this equation are identical 
to those used for the fluid region. The lone exception is 
the integral over S, which is treated explicitly. Control 
volumes containing only a solid are a special case of 
the above equation with integrals over only V, and S,. 
We note that implicit in this formulation is that the 
solid nodes are stationary. It is a simple extension to 
move solid nodes but this extension is unnecessary for 
the simulations presented in this work. 

3.6. The overall system of equations 
Inspection of the spatial discretizations given above 

indicates that A@ factors out of all of the terms in the 
continuity, momentum, and energy equations. These 
discrete approximations, along with the algebraic 
equations representing the interfacial conditions for 
interfacial nodes, make up a set of linear equations in 
the unknowns. The unknowns are the fluid velocity, 
the mesh velocity, the pressure and temperature at 
each node. These linear equations are assembled into a 
large, sparse, unsymmetric linear system of equations. 
This system of equations may be solved by any tech- 
nique suitable for the solution of sparse non-sym- 
metric systems. We currently use an ILU pre- 
conditioned transpose free quasi minimum residual 
method [23]. 

4. SAMPLE SIMULATIONS 

In this section we present various simulations 
depicting vapor bubble growth. The fluid in these 
simulations is water and the partial derivatives in the 
linearized state equations are obtained at the initial 
liquid pressure and corresponding saturation tem- 
perature. Initial conditions are found by specifying 
the initial liquid pressure, P,, and satisfying the equi- 
librium conditions : 

Pp-P, = &. (18) 

Note that in the absence of dynamic flow conditions 
the control volume momentum equations reduce, in 
the normal direction, to the third of these equilibrium 
conditions. 

4.1. Homogeneous bubble growth 
We first present simulations of homogeneous bub- 

ble growth in a superheated liquid. Despite the spheri- 
cal symmetry inherent in the physics, this simulation 
is a crucial test of numerical methods for liquid-vapor 
phase transitions. The ability to simulate homo- 
geneous bubble growth indicates the ability to handle 
the discontinuous phase velocities as well as the ability 
to capture and follow the thermal layer as it moves 
with the phase interface. The accuracy of the numeri- 
cal results is verified by comparison to the analytic 
solution of Mikic et a/. [2], known to reasonably rep- 
resent homogeneous bubble growth data : 

where 

R+ = ; [(t’ + 1)3’2 _ (1+)3’~ _ 11 (19) 

R++, t+=$ 

and 

(23) 

Shown in Fig. 3 is the computational grid used in 

Fig. 3. Computational grid for homogeneous bubble growth 
simulations (vapor elements not shown for clarity). 612 
vapor nodes, 870 liquid nodes, 19 interfacial nodes, 1482 

total nodes. 
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Table 1. Bubble radius (Ja = 15.7) using three different time 
increments. Spatial grid shown in Fig. 4 

Time step Cycle Bubble radius 

Coarse step :!.o X 10m6 s 3100 0.9832 mm 
Medium step 1 .o x 10-e s 6200 0.9835 mm 
Fine step 5.0 x lo-’ s 12400 0.9837 mm 

Table 2. Bubble radius (Ju = 15.17) using three different 
spatial resolutions. Time increment = 1 .O x 10m6 s 

Coarse grid 
Medium grid 
Fine grid 

Cycle Bubble radius 

6200 0.9905 mm 
6200 0.9835 mm 
6200 0.9827 mm 

the following set of simulations. The left and bottom 
boundaries are treated as symmetry boundaries while 
the top and right boundaries are open boundaries. 
The original bubble shape is spherical with a radius 
of 0.1 mm (note that the analytic solution assumes 
zero initial radius). The initial conditions are those 
mentioned above with the liquid superheated by the 
amount A9. Figure 4 shows comparisons of the bubble 
radius predicted by these simulations and the bubble 
radius predicted by the analytic solution. Once the 
initial transients die out, the results of the simulations 
are in reasonable agreement with the analytic solution 
for the Jakob numbers shown. Use of the linearized 
state equations limits us to Jakob in the range of these 
simulations. 

We next consider the convergence properties of the 
method by first varying the time increment followed 
by varying the spatial resolution. The stability limit 
for these simulations is the capillary limit mentioned 
earlier (an approximate capillary limit may be found 
by restricting the shortest wavelength capillary wave 
to move no more than a grid spacing along the inter- 
face per time step). Table 1 shows results for a time 
convergence study in which the largest time step is 
near the approximate capillary limit. Table 2 shows 
results for a spatial convergence study with three suc- 
cessive grid resolution increases by a factor of 3/2. 
The medium spatial resolution is that shown in Fig. 
2. The curves In Fig. 4 correspond to the medium 
spatial and temporal grid resolutions in Tables 1 and 
2. These results indicate that the curve in Fig. 4 at 
Ja = 15.17 represents a nearly converged result. 

4.2. Heterogeneous bubble growth 
The simulatisons of heterogeneous bubble growth 

presented here are intended to illustrate the basic 
capability of the method. Future efforts will focus on 
improvements necessary to simulate the full ebullition 
cycle of heterogeneous bubble growth including 

microlayer growth and contact line physics. The liquid 
microlayer poses difficulties in that the computational 
grid can become severely distorted as the microlayer 
forms. Presently, our discrete convective operators 
are not fully implicit and the distorted grid causes 
difficulty due to the convective stability limit. The 
simulations presented in this work, therefore, do not 
include the full evolution of the microlayer. We note 
that Lee and Nydahl [1 1] did include a microlayer in 
their simulation using assumed geometry. We do not 
use an assumed microlayer geometry as initial con- 
ditions for pedagogical reasons as one of the moti- 
vations for developing our method is to simulate the 
formation of the liquid microlayer. To this end our 
current efforts are directed towards making the dis- 
crete convective operators fully implicit and improv- 
ing our mesh motion algorithm. 

In these simulations we consider the interface to 
be pinned at the contact line with the contact angle 
changing in time. Thus, the two phases as well as the 
interface are satisfying the no-slip condition. It is a 
simple matter to keep the contact angle constant and 
allow the interface to slide along the wall as is the case 
for a real system. We do not do so here as the contact 
line generally exists under a microlayer thus simu- 
lations including real contact line behavior must 
include the microlayer. The simulations in this work 
are intended to show the ability to track the interface 
in situations without spherical symmetry and in the 
presence of a conducting solid wall. 

We begin our simulations by considering a vapor 
bubble on a wall, immersed in a superheated liquid. 
These conditions would arise when the surrounding 
liquid, initially at equilibrium with the vapor bubble, 
is depressurized thus creating a metastable liquid 
state. We consider water in equilibrium with it’s vapor 
at a pressure of 0.1 Mpa. The metastable liquid state 
is created by raising the water temperature by two 
degrees Kelvin corresponding to a Jakob number of 
6.1. The simulations include a steel wall with an adia- 
batic outer boundary. Shown in Fig. 5 is the geometry 
and a computational grid used in the simulations. We 
first use this problem to illustrate the convergence 
properties of the method for a problem without 
spherical symmetry. We use three grids with the 
element size increasing by a factor of 3/2. Table 3 
shows the location of the bubble cap and the liquid, 
vapor and interface velocities at the cap for the three 
grid resolutions at the five hundredth time cycle (these 
simulations use a time step of 0.002 msec). The grid 
shown in Fig. 5 is the medium resolution grid referred 
to in Table 3. The low resolution grid has 16 interfacial 
elements (17 nodes), the medium resolution grid has 
24 interface elements and the high resolution grid has 
32 interface elements. Figure 6 shows the velocity and 
temperature fields for the three grids at the five hun- 
dredth time cycle. Note that the location of the center 
of the eddy in the vapor is nearly the same for the 
three grid resolutions. These results are typical in that 
they indicate that the method, while formally first 
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Fig. 4. Comparison of simulated bubble growth curves and analytic solution [2] dashed-analytic, solid- 
present simulation : TopP, = 5.0 x lo4 Pa, A9 = 1.0, J = 5.73 ; Middle-P, = 1.0 x lo5 Pa, A9 = 5.0, 

Ja = 15.17; Bottom--P, = 5.0x lo4 Pa, A9 = 5.0, Ja = 28.65. 
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Fig. 5. Compi ltationi 
heterog :t:neous bubble 

I 4 

0.1 mm 

solid waif 

open 
boundary 

I 0.4 mm 

d domain for heterogeneous bubble growth simulations. 
growth simulations (vapor elements not shown for clarit) 

liquid nodes, 25 interfacial nodes, 35 15 solid nodes. 

Computational grid for 
I). 516 vapor nodes, 1201 
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Table 3. Bubble cap location and velocities for three grid resolutions at time cycle 500 

Cap position Interface velocity Liquid velocity Vapor velocity 

Coarse grid 0.0001571 0.7032 0.6811 0.6649 
Medium grid 0.0001546 0.9132 0.8754 0.7529 
Fine grid 0.000 1544 0.9712 0.9334 0.7739 

._ 
-_ 
._ 

‘_ 

‘_ 

:: 

Fig. 6. Velocity field and temperature contours for convergence test. Twenty contours starting at 9 = 372.0 
and incremented by 0.2 K. Upper left and lower left-low grid resolution. Upper middle and lower 

middle-medium grid resolution. Upper right and lower right-high grid resolution. 

order, obtains results more typical of a higher order 
method. These results do not indicate a converged 
solution, they do however show that the method is 
converging. We continue this simulation on the fine 
grid until the 15 000th time cycle. Figure 7 shows the 
temperature field at various time cycles. Note that the 
method is capturing the thermal layer as it moves with 
the bubble surface and that the thermal field in the 
solid is providing some of the energy for vaporization. 

The level of superheat in the previous simulation 
was such that the bubble shape remained nearly 
spherical. In the following simulation we double the 

liquid superheat. Shown in Fig. 8 is the bubble shape 
at various time cycles. As the interface propagates 
outward near the wall there is an apparent microlayer 
like region forming at the base of the bubble. The grid 
in the microlayer region has become compressed and 
distorted and we must stop the simulation near the 
last time cycle shown in the figure. This simulation 
indicates a possible mechanism for microlayer for- 
mation under low pressure and high superheat con- 
ditions as the rapid bubble growth is such that the 
inertia forces are large enough to produce a non- 
spherical bubble shape with increased curvature near 



Fig. 7. Temperature contours for depressurization simulation. Twenty contours starting at 9 = 372.0 and 
incremented by 0.2 K. Upper left-ncyc = 1000. Upper right-ncyc = 5000. Lower left-ncyc = 10 000. 

Lower right-ncyc = 15 000. 

Fig. 8. Elubble shape for final depressurization simulation. Time step is 0.02 PCS. Upper left-ncyc = 0. 
Upper right-ncyc = 500. Lower left-ncyc = 1000. Lower right-ncyc = 1500. 
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the wall. This simulation, while far from being a com- 
plete simulation of microlayer formation, does indi- 
cate that our interface tracking method has the poten- 
tial to be an important tool in the study of 
heterogeneous bubble growth. 

5. CONCLUSIONS 

We have presented a numerical method suitable for 
the local simulation of axisymmetric two-phase flows 
with mass transfer. Calculation of these flows is com- 
plicated by a moving phase interface across which the 
normal component of velocity and the pressure are 
discontinuous. These calculations are further com- 
plicated by the presence of steep temperature profiles 
near the moving phase interface. Our method 
addresses these difficulties by tracking the phase inter- 
face and by moving the computational grid in such a 
way as to keep a high grid resolution near the inter- 
face. We feel that this approach may eventually facili- 
tate a deeper understanding of nucleate bubble growth 
as the hydrodynamics and the bubble shape can be 
obtained as part of the solution. 
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